
Tic-Tac-Toe Procedures
from Simply Scheme 

Chapter 10
https://people.eecs.berkeley.edu/~bh/

ssch10/ttt.html
tree by Anne B

June 2020

ttt
Takes a 9-character board position and a 
letter representing the player (X or O). It 
uses find-triples to translate the 9-
character board position to a sentence of 
triples which each represent a row/column/
diagonal on the board. It feeds that into ttt-
choose, which chooses the square to go in 
next.

find-triples
Takes a 9-character board position. 
Returns a sentence where each word 
represents the status of a row/column/
diagonal on the board, where each 
character in the word is either an X or an O 
or the number of the square, depending on 
the board position.

substitute-triple
Takes a 3-character word representing a 
row/column/diagonal on the board and a 9-
character board position. Applies 
substitute-letter to each of the three 
squares in the 3-character word and 
returns a triple where each letter is either 
an X or an O or the number of the square, 
depending on the board position.

substitute-letter
Takes a 1-digit number of a square and a 
9-character board position. If there is an X 
or an O in that square in the board position, 
it returns that X or O. If that square was 
empty in the board position (_), it returns 
the number of the square.

ttt-choose
Takes a sentence with each 3-character 
word representing the situation of a row on 
the board and a letter representing the 
player. It feeds the arguments into i-can-
win?, opponent-can-win?, i-can-fork, 
and i-can-advance until one of them 
returns the number of a square instead of 
#f. It returns that number. If they all return 
#f, it uses best-free-square and returns 
the number that it returns.

i-can-win?
Takes a sentence with each word (of three 
characters) representing the situation of a 
row/column/diagonal on the board and a 
letter (X or O) representing the player. If the 
player cannot win that turn, it returns #f. If 
the player can win, it returns the number of 
a square that the player can play in to win. 
It uses my-pair? to keep all the triples (if 
any) where the player can win and then it 
uses choose-win to find the number of the 
square the player can go in from the first 
such triple.

choose-win
Takes a sentence of 3-character words 
where each word represents the status of a 
row/column/diagonal on the board. If the 
sentence is empty it returns #f. If the 
sentence is not empty, it picks the first 3-
character word and returns just the 
numbers in that word. Those numbers 
represent the squares that have not been 
taken by X or by O.

my-pair?
Takes a 3-character word representing 3 
squares in a row/column/diagonal, and one 
letter saying whether the player in question 
is X or O. Returns #t if the player can win 
by completing that row/column/diagonal. 
Checks to see if the player already has 
their mark in two of the squares with the 
third square not taken by the opponent.

opponent
Takes the letter X or the letter O and 
returns the other one.

opponent-can-win?
Takes a sentence with each 3-character 
word representing the situation of a row/
column/diagonal on the board and a letter 
representing the player. Uses i-can-win? 
to see if the opponent could win if it was 
the opponent’s turn and to say where the 
opponent would go to win. If so, it returns 
the number of that square. (The player will 
go there to prevent the opponent from 
winning there on the next turn.) If not, it 
returns #f.

opponent

i-can-win?

i-can-fork?
Takes a sentence with each 3-character 
word representing the situation of a row/
column/diagonal on the board and a letter 
representing the player. If pivots finds a 
place where the player can go which gives 
him the second mark in two different rows 
that have no opponent marks, it returns the 
number of the first such square. If not, it 
returns #f.

first-if-any
Takes a sentence. If the sentence is empty 
it returns #f. If the sentence is not empty it 
returns the first word of the sentence. 

pivots
Takes a sentence with each 3-character 
word representing the situation of a row/
column/diagonal on the board and a letter 
representing the player. Returns a 
sentence where each word is a digit and 
represents a square where the player can 
go in more than one row/column/diagonal 
where they already have exactly one 
square and the opponent has zero 
squares.

repeated-numbers
Takes a sentence. Returns a sentence that 
is a list of the digits that appear more than 
once in the words in the original sentence. 
Uses sort-digits to rearrange the digits in 
the given sentence, and then it keeps one 
of the digits that appear more than once 
and zero of the digits that appear zero or 
one times.

sort-digits
Takes a word that’s made up of number 
characters. Returns a sentence that 
rearranges the digit-numbers of the given 
word in numerical order, grouped into 
words by number.

extract-digit
Takes a character and a word. Returns only 
the characters in the word that match the 
given character. 

my-single?
Takes a 3-character word representing the 
situation in a row/column/diagonal of the 
board and a letter representing a player. 
Returns #t if that player has (exactly) one 
mark in that row/column/diagonal and the 
opponent has zero marks in that row/
column/diagonal. Otherwise it returns #f.

opponent

i-can-advance?
Takes a sentence with each 3-character 
word representing the situation in a row/
column/diagonal on the board and a letter 
representing the player. It looks for all the 
rows/columns/diagonals where the player 
has one mark and the other two spaces are 
empty. If there is at least one, it uses best-
move to pick which of the two empty 
spaces to return. If there isn’t at least one, 
it returns #f.

best-move
Takes three arguments: a sentence with 
the triples representing rows/columns/
diagonals where the player has marked 
one square and the other two are 
unmarked, a sentence with the triples 
representing all the row/column/diagonal 
positions, and a letter representing the 
player. If the first sentence is empty it 
returns #f. If not, it uses best-square to 
pick which square to choose from the first 
triple in the first sentence, and returns that.

best-square
Takes three arguments: a word 
representing a row/column/diagonal where 
the player has marked one square and the 
other two are unmarked, a sentence with 
the triples representing all the row/column/
diagonal positions, and a letter 
representing the player. Uses best-square-
helper and pivots to return the number of 
a square in that row/column/diagonal 
where the player could go to block the 
opponent from getting a pivot next turn, if 
there is one. If there isn’t, it returns the 
second of the two numbers.

best-square-helper
Takes a sentence of single digits showing 
where the opponent could pivot and a word 
with two numbers representing squares 
where you might move next. If the first 
square where you might move next is one 
where the opponent could go and pivot, it 
returns that one, blocking the opponent 
from going there. If not, it returns the 
second square number.

pivots

opponent

my-single?

best-free-square
Takes a sentence with each 3-character 
word representing the situation of a row/
column/diagonal on the board. Makes that 
sentence into one long word and then uses 
first-choice to pick which empty square to 
choose. It returns the number of that 
square.

first-choice
Takes a long word made by running 
together the triples that represent all the 
row positions on the board and a sentence 
of single digits representing the order of 
preference to pick squares in if you have 
no other reason (center, then corners, then 
sides). Returns the number of the square 
that has not been played in yet that is 
highest in the preference list.

Notes:

- This diagram includes only the 
procedures that are used only in 
this chapter.

- The procedures are in the 
order they’re listed in at the end 
of the chapter.

- The dotted lines with the 
arrows point to the first place a 
procedure was mentioned.

https://people.eecs.berkeley.edu/~bh/ssch10/ttt.html
https://people.eecs.berkeley.edu/~bh/ssch10/ttt.html

